
Introduction

Seasonal freezing-thawing events frequently occur in 
mid-high and high altitudes and latitudes. Freeze-thaw 
(FT) cycles have great impact on soil physical, chemical 

and biological properties during the late winter and 
early spring [1-6]. Essentially, the degree of this effect is 
controlled by the inherent properties of FT cycles (rate, 
temperature and duration period) and soil (moisture 
content, organic matter content, microbial biomass, 
bulk density, etc.) [7-9]. Numerous studies have tested 
the impact of FT cycles on soil aggregate stability. 
The results showed inconsistencies. Some studies have 
indicated that soil aggregate stability decreases with an 

Pol. J. Environ. Stud. Vol. 28, No. 5 (2019), 3635-3645

              Original Research             

Soil Aggregate Response to Three Freeze-Thaw 
Methods in a Northeastern China Mollisol

Shuai Chen1-3, C. Lee Burras2, Xingyi Zhang1*

1Key laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, 
Chinese Academy of Sciences, Harbin, China

2Department of Agronomy, Iowa State University, Ames, Iowa, USA
3University of Chinese Academy of Sciences, Beijing, China 

Received: 8 March 2018
Accepted: 25 October 2018

Abstract

Freeze-thaw (FT) cycles occur annually in soils of mesic and frigid temperature regimes. FT has 
profound impacts on soil aggregates yet is often difficult to document in field settings. As a result, 
laboratory-based FT experiments are widely used, albeit with their own limitations. Both laboratory 
and field-based research indicates that aggregate properties vary with rates of freezing and thawing  
as well as the number and amplitudes of FT cycles. In this study, we introduce a continuous  
freezing-to-thawing-to-freezing technique (i.e., “VTR”) and compare it to a commonly used discrete 
freeze-then-thaw-then-freeze method (i.e., “RTCR”) and compare both results to natural seasonal 
changes. Our study soil is the A horizon of the major cropped mollisol in northeastern China.  
We examined it under natural field soil moisture conditions as well as two controlled soil moisture 
contents in the laboratory. Both RTCR and VTR show a decrease in large (>1mm) aggregate content 
and a corresponding increase in medium (0.5 to 0.2 mm) aggregates (P>0.05) that is proportional to 
the number of FT cycles and soil moisture content. Wet aggregate stability (WAS) increased (P<0.05) 
over the time of the experiment with each method. RTCR data showed an interaction between FT 
cycles and soil water content. VTR was better, although certainly not with better matched field results  
than RTCR, which we attribute its FT cycles being matched to anactual field. These results confirm the 
dependability and authenticity of the VTR technique.
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increasing number of FT cycles [9-10]; whereas in others 
there were reverse results [11]. In other words, freeze-
thaw cycles can have either positive or negative effects 
on soil aggregates [12-15].

Most of the cited studies used – at least in part 
– the traditional discrete FT method, which can be 
named “repeated temperature cycle regime” (RTCR) 
treatments, to simulate FT cycles. RTCR uses the 
constant temperature of freezing and thawing, as well 
as a constant number and frequency of cycles on small 
amounts of homogenized in-situ soils [9, 14]. RTCR is 
designed on the principle that the laboratory application 
of a well-defined and widely-used method will identify 
the controlling soil properties and field conditions that 
result in more or less soil aggregate stability.  

The biggest challenge with RTCR is that it 
only partially simulates field conditions. The very 
“constancy” of FT patterns in the RTCR can limit its 
applicability to actual field conditions because the 
length and frequency of FT cycles in the field varies in 
any given winter as well as winter-to-winter [16]. This 
challenge seems especially pronounced when the RTCR 
uses short FT periods (e.g., 1 or 2 days or even 1 or 2 
weeks) [17]. In order to capitalize upon the strength 
of RTCR in giving replicable results under controlled 
experimental conditions, we developed a continuous 
FT method, which can be named “variable temperature 

regime” (VTR) treatment. It combines continuously 
freezing and thawing regimes with large soil volumes in 
order to better simulate the natural FT cycles of northern 
China. The objectives of this study were (a) to develop a 
variable temperature regime (VTR) treatment for FT for 
the upper 15 cm of soil, and (b) to evaluate the effect of 
different FT types on the soil aggregate size distribution 
and soil wet aggregate stability (WAS).

Material and Methods  

Site Description

The study area is located close to the city of Hailun 
in the center of the mollisol zone in northeastern 
China (47°21'N, 126°50'E). The region is a temperate 
continental monsoon climate (cold and very dry in 
winter, hot and rainy in summer). Average annual 
precipitation is 530 mm, with 65% of rainfall occurring 
from June to August. Annual sunshine is about 
2600-2800 h. Annual average available accumulated 
temperature (≥10ºC) is 2450ºC and total annual solar 
radiation is 4600 MJ m−2 [18]. 

Average annual temperature is 1.5ºC with an 
extreme minimum temperature of -39.5ºC and an 
extreme maximum temperature of +37ºC (average for 

Fig. 1. Hourly field air and soil temperatures in the NEIGAE mollisol plot in northeastern China; soil temperatures given at 0, 5, 10 and 
15 cm depths.
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2004-2011) [19]. From late November to early March, 
the temperature of the soil surface horizon (0-15 cm) 
remains below 0ºC, and the soil surface layer as well 
as the region’s water bodies are frozen permanently. 
Freezing conditions in this region generally begin in 
late October, while thawing normally predominates in 
late March (Fig. 1), during which the temperature of 
the soil surface horizon (0-15 cm) fluctuates around 0ºC 
with the soil progressively thawing more and more with 
each passing day and re-freezes less and less with each 
subsequent night. These conditions result in two periods 
of seasonal FT for the mollisols of NE China: (a) winter 
freezing period and (b) spring thawing period. We chose 
the air temperature fluctuations from Oct. 26 to Nov. 29 
and from Mar.15 to Apr. 20 as our VTR settings. 

The study soil is a loess-derived fine, mixed, 
superactive, Oxyaquic Haplocryoll. It has light clay 
texture, slightly acidic reaction and 4.4% soil organic 
matter (SOM) (Table 1) [20].

Experimental Design

The experiment was conducted in the Key 
Laboratory of Mollisols Agroecology, Northeast 
Institute of Geography and Agroecology, Chinese 
Academy of Sciences. Soil samples were collected from 
the cultivated layer (0-15 cm) in late October 2014, prior 
to the first soil freezing event, and air-dried at room 
temperature, crushed and sieved through a 10 mm mesh 
before experiment. In order to analyze the effect of 
seasonal FT cycle on soil aggregates, we collected soil 
again from the cultivated layer (0-15 cm) in late April 
2015, after the last soil thawing event. 

Fig. 2 shows a flow diagram of the comparison of 
both methods we used (RTCR and VTR).

VTR soil samples were put into 78 incubation 
vessels (13 cm width* 8 cm length* 15 cm height* 
1.5 cm thickness) made of polyolefin foam with good 

Table 1. Basic physical and chemical properties of the experimental Mollisol (0-20 cm).

Soil texture (%)
Bulk density (g cm-3) SOM (g kg-1) pH (H2O)

Sand Silt Clay

25.5 33.7 40.8 1.12 44.1 6.6

Fig. 2. Flow diagram comparing measuring soil aggregate stability using the repeated temperature cycle regime (RTCR) treatment, 
variable temperature regime (VTR) treatment and natural freeze-thaw cycles.
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adiabaticity (thermal conductivity = 0.031 W m-1 K-1). 
The incubation vessels have well insulated sides and 
bottom. The design insures the soil freeze-thaw process 
is driven by the interaction between chamber air 
temperature and the soil surface. This set-up simulates 
the natural freezing process along soil depth. The large 
well-insulated incubation vessels specifically prevent 
unreal large temperature fluctuations during FT cycles. 
With rapid freezing, the physical disruption of soil 
aggregates is minimized. 

Using the nHVSW (new high vacuum slow 
wetting) method [20], soil samples were modified to 3 
experimental moisture contents: W1 = 27% (g/g), which 
represents near droughty field conditions; W2 = 38% 
(g/g), which is field capacity; and W3 = 45% (g/g), which 
is near saturation. These moisture contents resulted in 
soil water being primarily in micropores (W1), in both 
micropores and mesopores (W2) and filling nearly pores 
including macropores (W3). 

As previously indicated, two methods (RTCR, VTR) 
were used to induce freezing and thawing. RTCR had 
constant temperatures of freezing and thawing, constant 
number and frequency of FT cycles while VTR was 
set to the air temperature at the field site during the FT 
period (Fig. 2). 

For the RTCR technique, 60 soil samples were placed 
in a temperature-controlled deep-freezer set at -15ºC for 
freezing cycles and 8ºC for thawing cycles. We carried 
out a pilot test before the actual experiment to examine 
the time it took for the soil samples to completely freeze 
and thaw. The temperature of each soil sample layer 
was detected directly by using a temperature recorder 
having 4 temperature probes installed in each soil layer 
(surface, 5, 10 and 15 cm). We found that each soil 
sample with different water contents froze completely at 
-15ºC after 24 h, and then thawed completely under the 
conditions of 8ºC after 48 h. Thus freezing and thawing 
time was set 24 h and 48 h, respectively. This freezing 
and thawing procedure was repeated for 0, 1, 3 and 6 
cycles. 

The VTR technique introduced in this study  
was conducted using the previously described 
soil incubation vessels that were placed in a 
controlled temperature chamber (CTC). The 
CTC model we used (LRH-150 CA, Shanghai 
Bluepard Instruments Co. Ltd., China) can be 
programmed for continuous temperature fluccuations. 
Using temperature probes and the field-based  
freezing and thawing data described in the following 
paragraph, we set 2 hours as a unit of the experiment 
within that time period consisting of two stages.  
The first 30 minutes was a buffering stage. The final  
90 minutes was the experimental stage. 

Before we started the laboratory experiment, we 
collected in situ air and soil temperature (0-15 cm) 
from the early fall to late spring. Soil temperature 
was measured at four depths: surface, 5, 10, 15 cm 
in the field. These were used to identify the proper 
temperatures and  duration of FT cycles in the CTC (Fig. 
1). More specifically, we collated those field temperature 
data to determine the average temperature for each  
2-hour experimental unit of the CTC. As already 
described, the first 30-minute stage was when the 
chamber temperature was raised or lowered to mimic 
the appropriate field conditions. The following  
90 minute stage was kept at a constant temperature.  
As with the actual fluctuation of temperature in the 
field, 12 units were set for one day in CTC and another 
12 units were set in the following day (Fig. 3). The 
temperature in CTC was observed during the FT cycles 
experiment in VTR (Fig. 4). Although the temperature 
fluctuation at CTC was not perfectly matched with 
those at the field site, VTR did provide consecutive 
temperature fluctuations akin to diurnal fluctuations in 
the field. 

After the freezing and thawing treatment, soil 
samples were air-dried and then wet-sieved. The wet-
sieving apparatus by Sun et al. (2014) [20] was used 
on all samples, and each treatment was replicated five 
times. Fifty g soil samples (air-dried passed through  

Fig. 3. Demonstration of settings for the rapid temperature experiment chamber as used in the variable temperature regime (VTR) 
treatment for measuring mollisol aggregate stability in northeastern China (C-01: the first section desired temperature, T-01: the time 
from current measured value temperature to the first section desired temperature, C-02: the first section desired temperature, T-02: the 
time of keeping the constant desired temperature).
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10 mm sieve) were placed on the top of a nest of four 
sieves (5, 2, 0.5, 0.25 mm) and submerged in distilled 
water for 10 min. Soil was then vertically sieved by 
the apparatus with 3 cm displacement and a rate of 30 
cycles per minute for 2 min. The resistant soil on each 
sieve and the unstable (<0.25 mm) aggregates below 
the bottom sieve were collected by transferring them 
into beakers. These soil samples were dried in an oven 
at 50ºC for 48 h and weighed. This data was used to 
determine the percentage of each aggregate size as well 
as the overall WAS content. 

Statistical Analysis

Statistical analysis was done using SPSS 16.0 
software (SPSS 16.0 for windows). The general linear 
model (GLM) procedure was performed to analyze 
treatment effects, including different FT treatments, 
water contents, and interactions between FT treatments 
and water contents. Tukey’s multiple comparison  
test was used for comparing means. The GLM  
procedure and Tukey’s were used to test whether 
the differences between aggregate size distribution 
and WAS measured with the two methods differed 
significantly for different FT treatments and water 
contents.

Results 

In order to validate the statistical validity of 
this experiment, an initial GLM test was conducted  
(Table 2). All treatments and their interactions were 
significant at P = 0.001 for all aggregate sizes and WAS 
(Table 2). 

Water Content Effect

Water content of soil samples influenced aggregate 
size distribution and WAS with different FT treatments 
(Table 3). The value of WAS decreased with increasing 
water content following freezing and thawing with 
both RTCR and VTR. After six FT cycles in RTCR, 
the WAS content significantly (P<0.05) decreased 
by 7.69%, 4.19% and 2.45% compared to the initial 
aggregate stability under 27%, 38% and 45% water 
contents, respectively. The proportion of soil aggregates 
significantly increased in the 0.25-1 mm fraction, but 
decreased in the other aggregate sizes (1-10 mm and < 
0.25 mm) for 27% and 45% water contents. However, 
the percentage of soil aggregates significantly increased 
in the 0.5-2 mm fraction for 38% water content after 
FT treatment. The proportion of soil mass in aggregates 
<0.25 mm was the largest fraction of the soil, followed 
sequentially by the 0.5-1, 0.25-0.5, 1-2 and 2-10 mm 
fractions at all water contents after FT cycles. The 
value of WAS under different water contents increased 
by 3.27% to 9.25% after VTR treatment (Table 3).  
The smallest percentage increase was for 27% water 
content, and the greatest increase was 38% water 
content. The largest percentage of aggregates were in 
the 0.5-2, 0.25-0.5 and 0.5-1 mm sizes for 27%, 38% and 
45% water contents, respectively, before the beginning 
of FT. Aggregate size of 0.5-1mm became the second 
largest percentage of aggregate size distribution after  
FT under all water contents (Table 3).

Freeze-Thaw Cycles Effect

FT impact on soil aggregate size distribution and 
WAS was significant (P<0.05) under all FT conditions 
(Table 3). The initial WAS (0 freeze-thaw cycle) of 
soil at 27% and 45% water contents was significantly 
(P<0.05) higher than soil at 38% water content. 

Fig. 4. Comparison of rapid temperature experiment chamber 
setting temperature and actual soil (“observed”) temperature in a 
large mollisol sample from northestern China.

Table 2. Probability values from the GLM test evaluating the effect of water contents (W), freeze-thaw treatments (FTT) and the W*FTT 
interaction on aggregate size distribution and wet aggregate stability (WAS) of the experimental mollisol (n = 75).

Treatments
Aggregate size distribution (mm)

WAS (%)
2-10 1-2 0.5-1 0.25-0.5 < 0.25

W <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

FTT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

W * FTT <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

FTT=freeze-thaw treatments (FTC-0, FTC-1, FTC-3, FTC-6 and VTR)
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More specifically, our data show that the content of 
large aggregates decreased after 1, 3 and 6 FT cycles 
regardless of antecedent water contents. At the same 
time, small aggregate sizes decreased significantly 
(P<0.05) only after 3 to 6 FT cycles, while the content 
of 0.5-1 mm aggregates increased significantly (P<0.05) 
during the FT cycles. After the first FT cycle in the 
RTCR method, the value of WAS significantly decreased 
in soils at 45% water content (P<0.05). For the samples 
with 27% and 38% water contents, significant (P<0.05) 
decrease in WAS occurred after 3 FT cycles. Compared 
with the samples at 0 cycle, the values of WAS for all 
samples were significant (P<0.05) – increasing after 
6 FT cycles with the change in contents being 7.69%, 
4.19% and 2.45% under 27%, 38% and 45% water 
contents, respectively. Table 3 also showed the same 
change trend for aggregate size distribution after 1 
FT cycle. The two large particle size groups (2-10 and  
1-2 mm) were decreased and the small particle size 
group (<0.25 mm) was increased in the RTCR treatment. 
Moreover, aggregates with large diameter (>0.5 
mm) were increased and others with small diameter  
(<0.5 mm) were decreased after 6 FT cycles (except for 
the 2-10 mm fraction in 45% water content). The largest 
and smallest values of WAS were found after 6 and 3 
cycles, respectively (expect for the smallest WAS value 
at 45% water content). The VTR treatment impact on 
soil aggregate size distribution and WAS were similar 

with RTCR treatment after 6 FT cycles under the same 
water content (Table 3). 

Seasonal Freeze-Thaw Effect

Under natural conditions, soil aggregate size 
distribution and WAS in situ were also affected 
significantly (P<0.05) by seasonal freezing-thawing 
cycles (Table 4). Soil aggregates of medium particle 
size group (0.5-2 mm) significantly (P<0.05) increased, 
while other particle size groups (2-10 and <0.5 mm) 
significantly (P<0.05) decreased after seasonal freezing-
thawing. The value of WAS increased 7.64% under 
natural conditions after seasonal freezing and thawing. 

Discussion

Both aggregate size distribution and WAS in 
this study were affected significantly after freezing 
and thawing of soil. The results are similar to the 
observations of Wang et al. (2012) [9], which stated 
that the greatest loss of aggregates during FT cycles 
occurred within the largest aggregate. Li and Fan 
(2014) [14] explained the effect of soil water on 
aggregate size distribution and stability, which is due 
to the crushing effect or freezing expansion combined 
with a reorganization of the soil aggregate. When soil 

Table 3. Aggregate size distribution (g 100g-1) and wet aggregate stability (WAS) for the mollisol of different water contents (W) and 
freeze-thaw treatments (FTT) (n = 75).

W FTT
Aggregate size distribution (mm)

WAS (%)
2-10 1-2 0.5-1 0.25-0.5 < 0.25

27%

FTC-0 13.26a 17.17a 19.20h 13.78f 36.59efg 63.41def

FTC-1 9.34cd 12.44def 21.42fg 18.41de 38.39def 61.61efg

FTC-3 5.02fgh 11.49ef 22.54ef 20.21bcd 40.74cd 59.26gh

FTC-6 10.91b 16.25ab 25.84bc 18.10e 28.90i 71.10a

VTR 13.48a 17.31a 24.21cde 17.66e 27.34i 72.66a

38%

FTC-0 7.80de 11.35fg 16.74i 20.91bc 43.20bc 56.80hi

FTC-1 3.49hi 9.77gh 22.85ef 18.15e 45.74ab 54.26ij

FTC-3 3.71hi 9.22h 21.91fg 18.52de 46.64a 53.36j

FTC-6 4.41gh 12.34def 26.26ab 17.98e 39.01de 60.99fg

VTR 6.39ef 16.35ab 23.02def 19.05de 35.19ghi 64.81bcd

45%

FTC-0 10.20bc 16.25ab 20.43gh 17.60e 35.52fgh 64.48cde 

FTC-1 2.80i 8.41h 21.90fg 24.23a 42.66bc 57.34hi

FTC-3 5.89fg 13.17cde 25.00bcd 19.11cde 36.83efg 63.17def

FTC-6 5.40fg 14.85bc 27.91a 18.77de 33.07hi 66.93bc

VTR 6.16f 13.84cd 26.50ab 21.25b 32.25h 67.75b

FTC = number of freeze-thaw cycles, VTR = continuous freeze-thaw method.
Means in columns without common lower case letter (a-j) differ significantly at P<0.05. 
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water becomes ice, the volume will expand and create  
a crushing effect. At the same time, the internal gas 
of the aggregate will shrink by cooling after freezing, 
which increases the subsequent effect. The crushing 
effect is more pronounced than reconstruction for the 
largest size aggregate, which results in a net loss of 
large aggregates. 

Our results suggest that WAS decreased with 
increasing water contents after freezing and thawing. 
This result was supported by the research of Li and 
Fan (2014) [14], which observed that soil cohesion 
decreased with an increase in water contents. However, 
our result seems to be contrary to the report of Sun and 
Lu (2014) [21]. Previous researchers have indicated that 
the rewetting soil has lower aggregate stability than air-
dried soil [22-23]. Air drying can increase mechanical 
resistance to detachment and aggregate breakdown, 
while rewetting enhances the breakdown of soil 
aggregates by pressurizing entrapped air [24-27]. Studies 
conducted by Marquez et al. (2004) [28] also showed that 
wetting can affect soil cohesion, which normally caused 
larger aggregates to break apart, thereby increasing the 
percentage of smaller aggregates. After water moves 
into small intra-aggregate pores, pore air is trapped and 
then compressed, which causes aggregate breakdown 
and slaking [29-31]. This is likely the explanation as to 
why our soil samples at 27% (pores contain both air and 
water but more contain air than water) were as stable 

as they were. The crushing effect increased when water 
content increased from 27% to 38%, but decreased after 
that point because at the highest water contents (45%) 
the volume of air entrapped is very small. This results 
in lowered compressive force to act on the aggregates. 
This interpretation was in accordance with the result of 
Vermang et al. (2009) [24] and Liu et al. (2011) [31]. 

We observed that the number of FT cycles had 
no consistent effect on WAS and aggregate size 
distribution. After one FT cycle in the RTCR method, 
the value of WAS was lower than before freezing. This 
result seems to be contrary to the reports of Lehrsch 
et al. (1991) [32] and Kreyling et al. (2010) [33], who 
reported that freezing and thawing usually increased 
stability with the first FT cycle. However, after six 
FT cycles in the RTCR method the value of WAS 
increased significantly compared with three cycles of 
FT. This result was similar to the research of Oztas 
and Fayetorbay (2003) [34]. We found that a decreased 
percentage of aggregates occurred in the large aggregate 
size (>1 mm) after each FT cycle. This indicated that FT 
cycles can reduce large aggregate size fractions, while 
the effect of small aggregate size fractions varies with 
different FT cycles. Li and Fan (2014) [14] concluded 
that changes in aggregate size fractions with variable 
FT cycles are the result of the interaction between soil 
shrinking and expanding forces relative to the space 
between aggregates.  

Fig. 5. Effects of different water contents (W) and freeze-thaw treatments (FTT) on soil aggregation in a mollisol from northeasterb 
China; data presented includes water stable aggregates (%) and wet aggregate stability (WAS).
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In this study, results for WAS and aggregate size 
distribution after seasonal FT were similar to those 
observed in the VTR method and after 6 FT cycles in 
the RTCR method for 38% water content (Fig. 5). These 
trends were associated with all settings for FT, i.e., 
cycle amplitude, freezing rate, number and frequency 
of FT cycles (Tables 3-4). A soil sample needed at least  
7 hours to be completely frozen from room temperature 
(20ºC) to subzero temperature under setting temperature 
(-15ºC), and 12 hours to be completely thawed from 
minimum to zero temperature under setting temperature 
(8ºC) in a constant temperature chamber (Table 5). 
Based on Tables 5 and 6, we found 22 FT cycles at the 

soil surface, only 5 of which extended through the entire 
soil sample with the VTR method. Therefore, the VTR 
method had a similar number of FT cycles with the field 
conditions, which helps explain why the results from the 
VTR method were similar to the result with 6 FT cycles 
in the RTCR method, while also better matching the 
results from the field. Table 6 also shows that the number 
of FT cycles decreased with increasing depth – as would 
be expected given how temperature change in soil is 
driven by atmospheric conditions. A critical observation 
for Fig. 1 was the difference in the number and duration 
of FT cycles in the upper and lower portions of the field 
soil, which indicates a need for laboratory methods 
that mimic this differential upper-lower cycling. Our 
data indicates that RTCR only replicated the deep soil 
conditions while VTR better replicated both. 

Even though the VTR chamber matched real field 
temperatures, the result between VTR treatment and 
natural conditions was not completely consistent in the 
soil surface. We attribute this in part to the snow covers 
on the soil surface in the field, which alters how air 
temperature impacts soil temperature flux. Second, there 
were different moisture contents for soil samples in the 
chamber and natural conditions. This was intensified 
by the seasonal changes of the natural environment. In 
spite of these deficiencies, VTR met every criteria of 
the RTCR while better replicating shallow, medium and 
deep conditions of the field soil data. We recognize that 
this approach may not be perfect for mimicking field 
conditions, but it is designed to be one step closer to 
actually predicting spring stable aggregate content for 
Mollisols in cryic, frigid and cold mesic soil temperature 
regimes. 

Fig. 6. Soil temperature break curves (soil surface, 5, 10 and 15 
cm depth) for a northeastern China mollisol using the repeated 
temperature cycle regime (RTCR) treatment of soil aggregate 
stability.

Table 4. Aggregate size distribution (g 100g-1) and wet aggregate stability (WAS) for field experiment data of the soil before the freezing 
event and after the thawing event (n = 10).

Treatment
Aggregate size distribution (mm)

WAS (%)
2~10 1~2 0.5~1 0.25~0.5 <0.25

Before freezing-thawing event 19.61a 14.21b 21.88b 18.75a 25.55a 74.45b

After freezing-thawing event 18.61b 21.19a 26.74a 15.55b 17.91b 82.09a

Means in columns without common lower case letter (a-b) differ significantly at P<0.05.

Table 5. Description of soil temperature break curves in pretest.

Soil layer

Duration time
Freezing process (24 h) Thawing process (48 h)

Room 
temperature to 

subzero 
temperature

Subzero 
temperature to 

minimum 
temperature

Relative 
constant 

temperature

Minimum 
temperature to 

zero temperature

Zero temperature 
to maximum 
temperature

Relative 
constant 

temperature

Surface 3 h 16 h 5 h 5 h 28 h 15 h
5 cm 6 h 14 h 4 h 10 h 25 h 13 h
10 cm 6 h 14 h 4 h 10 h 25 h 13 h
15 cm 7 h 13 h 4 h 12 h 24 h 12 h
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FTC

Duration Time (h)

VTR chamber
Natural condition

Soil surface 5 cm 10 cm 15 cm

F T F T F T F T F T

1 70 4 16 6 6 158 506 106 744 62

2 232 2 16 8 14 12 6 12 14 12

3 20 4 18 8 8 9 10 258 10 12

4 382 6 6 20 656 86 12 6 178 218

5 162 2 14 38 6 16 68 282

6 22 4 10 6 8 258

7 18 6 44 4 84 8

8 68 4 18 8 12 88

9 16 14 44 2 4 20

10 8 40 20 4 4 172

11 12 6 18 6

12 18 32 18 8

13 16 6 234 14

14 16 10 128 10

15 14 12 184 4

16 12 6 18 8

17 116 6 18 4

18 16 8 18 6

19 18 4 16 10

20 42 8 14 10

21 14 20 14 40

22 4 148 6 14

23 12 20

24 2 16

25 10 10

26 14 10

27 14 14

28 10 10

29 94 2

30 14 10

31 14 12

32 12 10

33 14 10

34 14 10

35 12 20

36 4 18

37 6 42

Table 6. Description of observed temperature in CTC and 4 soil layers in natural conditions.
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